Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Res Toxicol ; 37(4): 643-657, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38556765

RESUMEN

Organophosphorus (OP) nerve agents inhibit acetylcholinesterase (AChE), creating a cholinergic crisis in which death can occur. The phosphylated serine residue spontaneously dealkylates to the OP-aged form, which current therapeutics cannot reverse. Soman's aging half-life is 4.2 min, so immediate recovery (resurrection) of OP-aged AChE is needed. In 2018, we showed pyridin-3-ol-based quinone methide precursors (QMPs) can resurrect OP-aged electric eel AChE in vitro, achieving 2% resurrection after 24 h of incubation (pH 7, 4 mM). We prepared 50 unique 6-alkoxypyridin-3-ol QMPs with 10 alkoxy groups and five amine leaving groups to improve AChE resurrection. These compounds are predicted in silico to cross the blood-brain barrier and treat AChE in the central nervous system. This library resurrected 7.9% activity of OP-aged recombinant human AChE after 24 h at 250 µM, a 4-fold increase from our 2018 report. The best QMP (1b), with a 6-methoxypyridin-3-ol core and a diethylamine leaving group, recovered 20.8% (1 mM), 34% (4 mM), and 42.5% (predicted maximum) of methylphosphonate-aged AChE activity over 24 h. Seven QMPs recovered activity from AChE aged with Soman and a VX degradation product (EA-2192). We hypothesize that QMPs form the quinone methide (QM) to realkylate the phosphylated serine residue as the first step of resurrection. We calculated thermodynamic energetics for QM formation, but there was no trend with the experimental biochemical data. Molecular docking studies revealed that QMP binding to OP-aged AChE is not the determining factor for the observed biochemical trends; thus, QM formation may be enzyme-mediated.


Asunto(s)
Reactivadores de la Colinesterasa , Indolquinonas , Intoxicación por Organofosfatos , Soman , Humanos , Anciano , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/metabolismo , Serina , Oximas , Reactivadores de la Colinesterasa/química
2.
ACS Chem Neurosci ; 15(9): 1813-1827, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621296

RESUMEN

Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 µM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 µM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 µM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Reactivadores de la Colinesterasa , Compuestos Organofosforados , Animales , Inhibidores de la Colinesterasa/farmacología , Humanos , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/efectos de los fármacos , Ratones , Butirilcolinesterasa/metabolismo , Compuestos Organofosforados/farmacología , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Indolquinonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...